Física y Química – 4º ESO

PROFESOR:  Antonio Jesús Torres Gil.

PRESENTACIÓN

     La materia Física y Química juega un papel decisivo en la comprensión del funcionamiento del universo y las leyes que lo gobiernan, proporcionando a los alumnos y alumnas los conocimientos, destrezas y actitudes de la ciencia que les permiten desenvolverse con un criterio fundamentado en un mundo en continuo desarrollo científico, tecnológico, económico y social, promoviendo acciones y conductas que provocan cambios hacia un mundo más justo e igualitario.

     La Física y Química es una materia englobada en lo que se conoce como disciplinas STEM, propone el uso de las metodologías propias de la ciencia, abordadas a través del trabajo cooperativo interdisciplinar y su relación con el desarrollo socioeconómico, que estén enfocadas a la formación de alumnos y alumnas competentes, comprometidos con los retos del mundo actual y los objetivos de desarrollo sostenible, proporcionando a la materia un enfoque constructivo, crítico y emprendedor.

     En cuanto a los saberes básicos de esta materia, contemplan conocimientos, destrezas y actitudes básicas de estas áreas de conocimiento y se encuentran estructurados en los que tradicionalmente han sido los grandes bloques de conocimiento de la Física y la Química: «La materia», «La energía», «La interacción» y «El cambio». Además, este currículo propone la existencia de un bloque de saberes comunes denominado «Las destrezas científicas básicas» que hace referencia a las metodologías de la ciencia y a su importancia en el desarrollo de estas áreas de conocimiento. En este bloque se establece, además, la relación de la ciencia con una de sus herramientas más potentes, las matemáticas, que ofrecen un lenguaje de comunicación formal, incluyendo los conocimientos previos del alumnado y los que se adquieren a lo largo de esta etapa educativa. En el bloque de «La materia» los alumnos y alumnas trabajarán los conocimientos básicos sobre la constitución interna de las sustancias, describiendo cómo es la estructura de los elementos y de los compuestos químicos y las propiedades macroscópicas y microscópicas de la materia, preparándose para profundizar en estos contenidos en cursos posteriores. Con respecto al bloque «La energía», el alumnado profundiza en los conocimientos como las fuentes de energía y sus usos prácticos o los conceptos básicos acerca de las formas de energía. Adquiere, además, en esta etapa las destrezas y las actitudes que están relacionadas con el desarrollo social y económico del mundo real y sus implicaciones medioambientales. En el bloque «La interacción» se describen cuáles son los efectos principales de las interacciones fundamentales de la naturaleza y el estudio básico de las principales fuerzas del mundo natural, así como sus aplicaciones prácticas en campos tales como la astronomía, el deporte, la ingeniería, la arquitectura o el diseño. Por último, el bloque de «El cambio» aborda las principales transformaciones físicas y químicas de los sistemas materiales y naturales, así como los ejemplos más frecuentes del entorno y sus aplicaciones y contribuciones a la creación de un mundo mejor.

     La construcción de la ciencia y el desarrollo del pensamiento científico durante todas las etapas del desarrollo del alumnado parten del planteamiento de cuestiones científicas basadas en la observación directa o indirecta del mundo en situaciones y contextos habituales, en su intento de explicación a partir del conocimiento, de la búsqueda de evidencias, la indagación y en la correcta interpretación de la información que a diario llega al público en diferentes formatos y a partir de diferentes fuentes. Por eso, el enfoque que se le dé a esta materia a lo largo de esta etapa educativa debe incluir necesariamente un tratamiento experimental y práctico que amplíe la experiencia de los alumnos y alumnas más allá de lo académico, permitiéndole hacer conexiones con sus situaciones cotidianas y contexto, lo que contribuirá de forma significativa a que todos desarrollen las destrezas características de la ciencia.

.

COMPETENCIAS ESPECÍFICAS

 

COMPETENCIAS ESPECÍFICAS PARA EL ÁREA DE FÍSICA Y QUÍMICA DENOMINACIÓN ABREVIADA
1 Comprender y relacionar los motivos por los que ocurren los principales fenómenos fisicoquímicos del entorno, explicándolos en términos de las leyes y teorías científicas adecuadas, para resolver problemas con el fin de aplicarlas para mejorar la realidad cercana y la calidad de vida humana. Análisis de problemas y cuestiones.
2 Expresar las observaciones realizadas por el alumnado en forma de preguntas, formulando hipótesis, para explicarlas y demostrando dichas hipótesis a través de la experimentación científica, la indagación y la búsqueda de evidencias, para desarrollar los razonamientos propios del pensamiento científico y mejorar las destrezas en el uso de las metodologías científicas. Método científico.
3 Manejar con soltura las reglas y normas básicas de la física y la química en lo referente al lenguaje de la IUPAC, al lenguaje matemático, al empleo de unidades de medida correctas, al uso seguro del laboratorio y a la interpretación y producción de datos e información en diferentes formatos y fuentes (textos, enunciados, tablas, gráficas, informes, manuales, diagramas, fórmulas, esquemas, modelos, símbolos), para reconocer el carácter universal y transversal del lenguaje científico y la necesidad de una comunicación fiable en investigación y ciencia entre diferentes países y culturas. Expresión científica.
4 Utilizar de forma crítica, eficiente y segura plataformas digitales y recursos variados, tanto para el trabajo individual como en equipo, para fomentar la creatividad, el desarrollo personal y el aprendizaje individual y social, mediante la consulta de información, la creación de materiales y la comunicación efectiva en los diferentes entornos de aprendizaje. Tratamiento y comprensión de la información.
5 Utilizar las estrategias propias del trabajo colaborativo, potenciando el crecimiento entre iguales como base emprendedora de una comunidad científica crítica, ética y eficiente, para comprender la importancia de la ciencia en la mejora de la sociedad andaluza y global, las aplicaciones y repercusiones de los avances científicos, la preservación de la salud y la conservación sostenible del medioambiente. Trabajo colaborativo.
6 Comprender y valorar la ciencia como una construcción colectiva en continuo cambio y evolución, en la que no solo participan las personas dedicadas a la ciencia, sino que también requiere de una interacción con el resto de la sociedad, para obtener resultados que repercutan en el avance tecnológico, económico, ambiental y social. Actitud científica.

 

SABERES BÁSICOS

Los saberes básicos se dividirán en 5 bloques temáticos:

A: Destrezas científicas.

B: La materia.

C: La energía.

D: La interacción.

E: El cambio.

.

BLOQUE TEMÁTICO SABERES BÁSICOS

A

Destrezas científicas básicas

.

A.1. Diseño del trabajo experimental y emprendimiento de proyectos de investigación para la resolución de problemas mediante el uso de la experimentación y el tratamiento del error, la indagación, la deducción, la búsqueda de evidencias o el razonamiento lógico-matemático para hacer inferencias válidas sobre la base de las observaciones y sacar conclusiones pertinentes y generales que vayan más allá de las condiciones experimentales para aplicarlas a nuevos escenarios. La investigación científica. La medida y su error. Análisis de datos experimentales.

A.2. Empleo de diversos entornos y recursos de aprendizaje científico, como el laboratorio o los entornos virtuales, utilizando de forma correcta los materiales, sustancias y herramientas tecnológicas y atendiendo a las normas de uso de cada espacio para asegurar la conservación de la salud propia y comunitaria, la seguridad en redes y el respeto sostenible por el medioambiente. Proyecto de investigación sencillo.

A.3. Uso del lenguaje científico, incluyendo el manejo adecuado de sistemas de unidades, la determinación de la ecuación de dimensiones de una fórmula sencilla, y herramientas matemáticas básicas, para conseguir una comunicación argumentada con diferentes entornos científicos y de aprendizaje. Las magnitudes. Ecuaciones dimensionales. El informe científico. Expresión de resultados de forma rigurosa en diferentes formatos.

A.4. Interpretación y producción de información científica en diferentes formatos y a partir de diferentes medios para desarrollar un criterio propio basado en lo que el pensamiento científico aporta a la mejora de la sociedad para hacerla más justa, equitativa e igualitaria. Utilización de herramientas tecnológicas en el entorno científico. Selección, comprensión e interpretación de la información relevante de un texto de divulgación científica.

A.5. Valoración de la cultura científica y del papel de científicos y científicas en los principales hitos históricos y actuales de la física y la química para el avance y la mejora de la sociedad.

B

La materia.

.

.

B.1. Realización de problemas de variada naturaleza sobre las propiedades fisicoquímicas de los sistemas materiales más comunes, en función de la naturaleza del enlace químico y de las fuerzas intermoleculares, incluyendo disoluciones y sistemas gaseosos, para la resolución de problemas relacionados con situaciones cotidianas diversas.

B.2. Reconocimiento de los principales modelos atómicos clásicos y cuánticos y la descripción de las partículas subatómicas de los constituyentes de los átomos estableciendo su relación con los avances de la física y de la química más relevantes de la historia reciente. Estructura electrónica de los átomos.

B.3. Relación, a partir de su configuración electrónica, de la distribución de los elementos en la Tabla Periódica con sus propiedades fisicoquímicas más importantes, agrupándolos por familias, para encontrar generalidades.

B.4. Valoración de la utilidad de los compuestos químicos a partir de sus propiedades en relación con cómo se combinan los átomos, a la naturaleza iónica, covalente o metálica del enlace químico y a las fuerzas intermoleculares, como forma de reconocer la importancia de la química en otros campos como la ingeniería, la biología o el deporte.

B.5. Cuantificación de la cantidad de materia de sistemas de diferente naturaleza en los términos generales del lenguaje científico, aplicación de la constante del número de Avogadro y reconocimiento del mol como la unidad de la cantidad de materia en el Sistema Internacional de Unidades para manejar con soltura las diferentes formas de medida y expresión de la misma en el entorno científico.

B.6. Utilización e interpretación adecuada de la formulación y nomenclatura de compuestos químicos inorgánicos ternarios mediante las reglas de la IUPAC para contribuir a un lenguaje científico común.

B.7. Introducción a la formulación y nomenclatura de los compuestos orgánicos mediante las reglas de la IUPAC como base para reconocer y representar los hidrocarburos sencillos y los grupos funcionales de alcoholes, aldehídos, cetonas, ácidos carboxílicos, ésteres y aminas para entender la gran variedad de compuestos del entorno basados en el carbono, su importancia biológica, sus múltiples usos y sus aplicaciones de especial interés.

C

La energía.

C.1. Formulación y comprobación de hipótesis sobre las distintas formas de energía, y sus aplicaciones a partir de sus propiedades y del principio de conservación, como base para la experimentación y la resolución de problemas relacionados con la energía mecánica, con o sin fuerza de rozamiento, en situaciones cotidianas que les permita asumir el papel que esta juega en el avance de la investigación científica.

C.2. Reconocimiento cualitativo y cuantitativo de los distintos procesos de transferencia de energía, de la velocidad a la que transcurren y de sus efectos en los cuerpos, especialmente los cambios de estado y la dilatación, en los que están implicados fuerzas o diferencias de temperatura, como base de la resolución de problemas cotidianos. La luz y el sonido como ondas que transfieren energía. Utilización de la energía del Sol como fuente de energía limpia y renovable.

C.3. Reconocimiento cualitativo y cuantitativo de que el calor y el trabajo son dos formas de transferencia de energía para identificar los diversos contextos en que se producen y valorar su importancia en situaciones de la vida cotidiana.

C.4. Aplicación del concepto de equilibrio térmico al cálculo del valor de la energía transferida entre cuerpos a distinta temperatura y al valor de la temperatura de equilibrio para resolver problemas sencillos en situaciones de la vida cotidiana.

C.5. Estimación de valores de energía y consumos energéticos en situaciones cotidianas mediante la aplicación de conocimientos, la búsqueda de información contrastada, la experimentación y el razonamiento científico para debatir y comprender la importancia de la energía en la sociedad, su producción y su uso responsable; así como la importancia histórica y actual de las máquinas térmicas.

D

La interacción.

D.1. Predicción y comprobación, utilizando la experimentación y el razonamiento lógico-matemático, de las principales magnitudes, ecuaciones y gráficas que describen el movimiento de un cuerpo, tanto rectilíneo como circular, para relacionarlo con situaciones cotidianas y la mejora de la calidad de vida.

D.2. Aplicación de las Leyes de Newton y reconocimiento de la fuerza como agente de cambios en los cuerpos, como principio fundamental de la Física que se aplica a otros campos como el diseño, el deporte o la ingeniería.

D.3. Uso del álgebra vectorial básica para la realización gráfica y numérica de operaciones con fuerzas y su aplicación a la resolución de problemas relacionados con sistemas sometidos a conjuntos de fuerzas y valoración de su importancia en situaciones cotidianas.

D.4. Aplicación de la Ley de Gravitación Universal en diferentes contextos, como la caída de los cuerpos y el movimiento orbital, para interpretar y explicar situaciones cotidianas.

D.5. Identificación y manejo de las principales fuerzas del entorno cotidiano, como el peso, la normal, el rozamiento, la tensión o el empuje, y su uso en la explicación de fenómenos físicos en distintos escenarios.

D.6. Valoración de los efectos de las fuerzas aplicadas sobre superficies que afectan a medios líquidos o gaseosos, especialmente del concepto de presión, para comprender las aplicaciones derivadas de sus efectos.

E

El cambio.

.

E.1. Utilización de la información contenida en una ecuación química ajustada y de las leyes más relevantes de las reacciones químicas para hacer con ellas predicciones cualitativas y cuantitativas por métodos experimentales y numéricos, y relacionarlo con los procesos fisicoquímicos de la industria, el medioambiente y la sociedad.

E.2. Descripción cualitativa de reacciones químicas del entorno cotidiano, incluyendo las combustiones, las neutralizaciones y los procesos electroquímicos, comprobando experimentalmente algunos de sus parámetros, para hacer una valoración de sus implicaciones en la tecnología, la sociedad o el medioambiente y de su especial importancia económica y social en Andalucía (el hidrógeno verde, los combustibles fósiles, la metalurgia y electrólisis del cobre).

E.3. Aplicación de la Teoría de Arrhenius al estudio de las propiedades de los ácidos y bases, los indicadores y la escala de pH para describir su comportamiento químico y sus aplicaciones en situaciones de la vida cotidiana.

E.4. Relación de las variables termodinámicas y cinéticas en las reacciones químicas, aplicando modelos como la teoría de colisiones, para explicar el mecanismo de una reacción química, su velocidad y energía, a partir de la reordenación de los átomos, así como la ley de conservación de la masa y realizar predicciones aplicadas a los procesos cotidianos más importantes.

.

.

CRITERIOS DE EVALUACIÓN

.

.

COMPETENCIAS ESPECÍFICAS

.

CRITERIOS DE EVALUACIÓN FYQ 3º ESO INSTRUMENTOS

DE EVALUACIÓN

Descripción literal Denominación abreviada
.

1

Análisis de problemas y cuestiones.

.

.

1.1.Identificar, comprender y explicar los fenómenos fisicoquímicos cotidianos más relevantes, a partir de los principios, teorías y leyes científicas adecuadas, expresándolos, de manera argumentada, utilizando diversidad de soportes y medios de comunicación.
Identificación y explicación de fenómenos científicos. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

 

Actividades de aula.

Portfolio.

Pruebas escritas.

Prácticas y simulaciones.

Proyecto científico.

.

1.2.Resolver los problemas fisicoquímicos planteados utilizando las leyes y teorías científicas adecuadas, razonando los procedimientos utilizados para encontrar las soluciones y expresando adecuadamente los resultados.

Resolución de problemas.
1.3.Reconocer y describir en el entorno inmediato situaciones problemáticas reales de índole científica y emprender iniciativas en las que la ciencia, y en particular la física y la química, pueden contribuir a su solución, analizando críticamente su impacto en la sociedad.
Iniciativa científica.

2

Método científico.

.

2.1.Emplear las metodologías propias de la ciencia para identificar y describir fenómenos a partir de cuestiones a las que se pueda dar respuesta a través de la indagación, la deducción, el trabajo experimental y el razonamiento lógicomatemático, diferenciándolas de aquellas pseudocientíficas que no admiten comprobación experimental.

Aplicación de metodologías científicas.

2.2.Seleccionar, de acuerdo con la naturaleza de las cuestiones que se traten, la mejor manera de comprobar o refutar las hipótesis formuladas, para diseñar estrategias de indagación y búsqueda de evidencias que permitan obtener conclusiones y repuestas ajustadas a la naturaleza de la pregunta formulada.

Resolución de cuestiones.

2.3.Aplicar las leyes y teorías científicas conocidas para formular cuestiones e hipótesis, de manera informada y coherente con el conocimiento científico existente y diseñar los procedimientos experimentales o deductivos necesarios para resolverlas o comprobarlas.

Aplicación y diseño de metodologías científicas.

3

Expresión científica.

.

3.1.Emplear datos en diferentes formatos para interpretar y comunicar información relativa a un proceso fisicoquímico concreto, relacionando entre sí lo que cada uno de ellos contiene, y extrayendo en cada caso lo más relevante para la resolución de un problema.

Extracción de datos.

3.2.Utilizar adecuadamente las reglas básicas de la física y la química, incluyendo el uso de unidades de medida, las herramientas matemáticas y las reglas de nomenclatura, consiguiendo una comunicación efectiva con toda la comunidad científica.

Uso de nomenclatura científica.

3.3.Poner en práctica las normas de uso de los espacios específicos de la ciencia, como el laboratorio de física y química, como medio de asegurar la salud propia y colectiva, la conservación sostenible del medioambiente y el cuidado de las instalaciones.

Uso responsable de espacios de trabajo.

4

Tratamiento y comprensión de la información

.

4.1.Utilizar recursos variados, tradicionales y digitales, mejorando el aprendizaje autónomo y para mejorar la interacción con otros miembros de la comunidad educativa, con respeto hacia docentes y estudiantes y analizando críticamente las aportaciones de cada participante.

Utilización de recursos.

4.2.Trabajar de forma adecuada y versátil con medios variados, tradicionales y digitales, en la consulta de información y la creación de contenidos, seleccionando con criterio las fuentes más fiables y desechando las menos adecuadas para la mejora del aprendizaje propio y colectivo.

Consulta de fuentes y creación de contenidos.

5

Trabajo colaborativo.

.

5.1.Establecer interacciones constructivas y coeducativas, emprendiendo actividades de cooperación y del uso de las estrategias propias del trabajo colaborativo, como forma de construir un medio de trabajo eficiente en la ciencia.

Participación en actividades cooperativas.

5.2.Emprender, de forma guiada y de acuerdo a la metodología adecuada, proyectos científicos que involucren al alumnado en la mejora de la sociedad y que creen valor para el individuo y para la comunidad, tanto local como globalmente.

Realización de proyectos.

6

Actitud científica.

.

6.1.Reconocer y valorar, a través del análisis histórico de los avances científicos logrados por hombres y mujeres de ciencia, que la ciencia es un proceso en permanente construcción, así como reconocer las repercusiones mutuas de la ciencia actual con la tecnología, la sociedad y el medioambiente.

Construcción científica.

6.2.Detectar en el entorno las necesidades tecnológicas, ambientales, económicas y sociales más importantes que demanda la sociedad, entendiendo la capacidad de la ciencia para darles solución sostenible a través de la implicación de todos los ciudadanos.

Identificación de necesidades CTS.

 

Metodología

 

     Uno de los objetivos principales, compatible con los principios pedagógicos agustinianos, es convertir al alumno en el protagonista de su propio proceso de aprendizaje. Fomentar la autonomía personal del alumnado, ejerciendo el docente el papel de facilitador y mediador del entusiasmo. Para ello haremos uso de las siguientes herramientas metodológicas:

a) Presentaciones y material didáctico de cada tema. Se proporcionará al alumnado material audiovisual, apuntes y material de apoyo al libro de texto para lograr la adquisición de las correspondientes competencias.
b) Cuaderno de la asignatura. Los alumnos elaborarán un portfolio en el que irán reflejando los apuntes tomados en clase y el trabajo desarrollado durante cada unidad.
c) Entrega de tareas a través de Google Classroom para la parte más instrumental de la materia. La realización de las actividades y tareas será mayoritariamente en casa y en formato digital, canalizando la entrega y devolución de trabajos a través de la aplicación Google Classroom.
d) Experiencias de laboratorio. Habrá posibilidad de hacer prácticas o experiencias de laboratorio, que podrán hacerse de manera presencial en el aula-laboratorio Carl Sagan. Se harán prácticas de física y química haciendo uso de material real de laboratorio, y cuando no sea posible mediante simulaciones usando el iPad como herramienta de trabajo. No se tratará de actividades aisladas, sino integradas en las situaciones de aprendizaje y en ellas tendrán un papel muy activo los grupos de trabajo que se establezcan.
e) Proyectos científicos. Se pondrán en marcha situaciones de aprendizaje de mayor calado que requerirá una mayor dedicación de esfuerzo y tiempo dado que implica investigación en torno a un tema determinado. Estará relacionada con alguna de las unidades didácticas trabajadas en el trimestre y contará con el asesoramiento y guía del profesor para su desarrollo.

.

error: El contenido esta protegido por derechos de Autor y Protección de datos